All Issue

2024 Vol.51, Issue 4 Preview Page

Animal

1 December 2024. pp. 443-450
Abstract
References
1

Bae JG, Lee YK, Park BY, Lym HS, Jung BS. 2016. Prediction of ham weight with the autofom in Korea. Korean Journal of Veterinary Service 39:7-12. [in Korean]

10.7853/kjvs.2016.39.1.7
2

Baulain U, Wiese M, Tholen E, Höreth R, Hoppenbrock KH. 2004. Magnetic resonance tomography as a reference technique to determine body composition in pig performance testing. Fleischwirtschaft 84:101-104. [in German]

3

Bohrer BM, Wang Y, Dorleku JB, Campbell CP, Mandell IB. 2024. Pork muscle profiling: pH and instrumental color of the longissimus thoracis is not representative of pH and instrumental color of shoulder and ham muscles. Meat Science 208:109380.

10.1016/j.meatsci.2023.10938037925977
4

Bünger L, Macfarlane JM, Lambe NR, Conington J, McLean KA, Moore K, Glasbey CA, Simm G. 2011. Use of X-ray computed tomography (CT) in UK sheep production and breeding. In CT Scanning - Techniques and Applications edited by Subburaj K. pp. 329-348. InTech, Rijeka, Croatia.

10.5772/23798
5

Collewet G, Bogner P, Allen P, Busk H, Dobrowolski A, Olsen E, Davenel A. 2005. Determination of the lean meat percentage of pig carcasses using magnetic resonance imaging. Meat Science 70:563-572.

10.1016/j.meatsci.2005.02.00522063881
6

Font i Furnols M, Gispert M. 2009. Comparison of different devices for predicting the lean meat percentage of pig carcasses. Meat Science 83:443-446.

10.1016/j.meatsci.2009.06.01820416687
7

Goodpaster BH. 2002. Measuring body fat distribution and content in humans. Current Opinion in Clinical Nutrition and Metabolic Care 5:481-487.

10.1097/00075197-200209000-0000512172470
8

Kim GW, Kim SE. 2009. Analysis of the domestic consumer's preference and consumption behaviors on pork. Journal of Animal Science and Technology 51:81-90. [in Korean]

10.5187/JAST.2009.51.1.081
9

Kim S, Choi J, Kim ES, Keum GB, Doo H, Kwak J, Sumin R, Choi Y, Kang J, Kim H, et al. 2024. Assessing the relationship between muscle-to-fat ratio in pork belly and Boston butt using magnetic resonance imaging. Korean Journal of Agricultural Science 51:187-192.

10.7744/kjoas.510209
10

Kim S, Choi J, Kim ES, Keum GB, Doo H, Kwak J, Sumin R, Choi Y, Pandey S, Lee NR, et al. 2023. Evaluation of the correlation between the muscle fat ratio of pork belly and pork shoulder butt using computed tomography scan. Korean Journal of Agricultural Science 50:809-816.

10.7744/kjoas.500418
11

Kloareg M, Noblet J, Van Milgen J. 2006. Estimation of whole body lipid mass in finishing pigs. Animal Science 82:241-251.

10.1079/ASC200529
12

Kongsro J, Gjerlaug-Enger E. 2013. In vivo prediction of intramuscular fat in pigs using computed tomography. Open Journal of Animal Sciences 3:321-325.

10.4236/ojas.2013.34048
13

Lambe NR, Wood JD, McLean KA, Walling GA, Whitney H, Jagger S, Fullarton P, Bayntun J, Bünger L. 2013. Effects of low protein diets on pigs with a lean genotype 2. Compositional traits measured with computed tomography (CT). Meat Science 95:129-136.

10.1016/j.meatsci.2013.04.03823688799
14

Lim D. 2018. Effect of carcass weight and thickness of back fat on the ratio of intramuscular fat in pork belly and shoulder butt. Food Science of Animal Resources and Industry 7:74-83. [in Korean]

15

Monziols M, Collewet G, Bonneau M, Mariette F, Davenel A, Kouba M. 2006. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Science 72:146-154.

10.1016/j.meatsci.2005.06.01822061385
16

Monziols M, Collewet G, Mariette F, Kouba M, Davenel A. 2005. Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magnetic Resonance Imaging 23:745-755.

10.1016/j.mri.2005.05.00116198830
17

Narsaiah K, Biswas AK, Mandal PK. 2019. Nondestructive methods for carcass and meat quality evaluation. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies edited by Biswas AK, Mandal PK. pp. 37-49. Academic Press, Cambridge, MA, USA.

10.1016/B978-0-12-819233-7.00003-3
18

Navajas EA, Richardson RI, Fisher AV, Hyslop JJ, Ross DW, Prieto N, Simm G, Roehe R. 2010. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography. Animal 4:1810-1817.

10.1017/S175173111000109622445141
19

Prieto N, Navajas EA, Richardson RI, Ross DW, Hyslop JJ, Simm G, Roehe R. 2010. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Science 86:770-779.

10.1016/j.meatsci.2010.06.02020655149
20

Prieto N, Roehe R, Lavín P, Batten G, Andrés S. 2009. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Science 83:175-186.

10.1016/j.meatsci.2009.04.01620416766
21

Romvári R, Szabó A, Kárpáti J, Kovách G, Bázár G, Horn P. 2005. Measurement of belly composition variability in pigs by in vivo computed tomographic scanning. Acta Veterinaria Hungarica 53:153-162.

10.1556/avet.53.2005.2.115959974
22

Rosenvold K, Andersen HJ. 2003. Factors of significance for pork quality-a review. Meat Science 64:219-237.

10.1016/S0309-1740(02)00186-922063008
23

Scholz AM, Bünger L, Kongsro J, Baulain U, Mitchell AD. 2015. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 9:1250-1264.

10.1017/S175173111500033625743562PMC4492221
24

Silva S, Guedes C, Rodrigues S, Teixeira A. 2020. Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats: A review. Foods 9:1074.

10.3390/foods908107432784641PMC7466308
25

Szabo C, Babinszky L, Verstegen MWA, Vangen O, Jansman AJM, Kanis E. 1999. The application of digital imaging techniques in the in vivo estimation of the body composition of pigs: A review. Livestock Production Science 60:1-11.

10.1016/S0301-6226(99)00050-0
26

Szabo C, Jansman AJ, Babinszky L, Kanis E, Verstegen MW. 2001. Effect of dietary protein source and lysine:DE ratio on growth performance, meat quality, and body composition of growing-finishing pigs. Journal of Animal Science 79:2857-2865.

10.2527/2001.79112857x11768115
27

Wu X, Liang X, Wang Y, Wu B, Sun J. 2022. Non-destructive techniques for the analysis and evaluation of meat quality and safety: A review. Foods 11:3713.

10.3390/foods1122371336429304PMC9689883
Information
  • Publisher :Institute of Agricultural Science, Chungnam National University
  • Publisher(Ko) :충남대학교 농업과학연구소
  • Journal Title :Korean Journal of Agricultural Science
  • Journal Title(Ko) :농업과학연구
  • Volume : 51
  • No :4
  • Pages :443-450
  • Received Date : 2024-08-20
  • Revised Date : 2024-08-29
  • Accepted Date : 2024-09-02