Animal
Bae JG, Lee YK, Park BY, Lym HS, Jung BS. 2016. Prediction of ham weight with the autofom in Korea. Korean Journal of Veterinary Service 39:7-12. [in Korean]
10.7853/kjvs.2016.39.1.7Baulain U, Wiese M, Tholen E, Höreth R, Hoppenbrock KH. 2004. Magnetic resonance tomography as a reference technique to determine body composition in pig performance testing. Fleischwirtschaft 84:101-104. [in German]
Bohrer BM, Wang Y, Dorleku JB, Campbell CP, Mandell IB. 2024. Pork muscle profiling: pH and instrumental color of the longissimus thoracis is not representative of pH and instrumental color of shoulder and ham muscles. Meat Science 208:109380.
10.1016/j.meatsci.2023.10938037925977Bünger L, Macfarlane JM, Lambe NR, Conington J, McLean KA, Moore K, Glasbey CA, Simm G. 2011. Use of X-ray computed tomography (CT) in UK sheep production and breeding. In CT Scanning - Techniques and Applications edited by Subburaj K. pp. 329-348. InTech, Rijeka, Croatia.
10.5772/23798Collewet G, Bogner P, Allen P, Busk H, Dobrowolski A, Olsen E, Davenel A. 2005. Determination of the lean meat percentage of pig carcasses using magnetic resonance imaging. Meat Science 70:563-572.
10.1016/j.meatsci.2005.02.00522063881Font i Furnols M, Gispert M. 2009. Comparison of different devices for predicting the lean meat percentage of pig carcasses. Meat Science 83:443-446.
10.1016/j.meatsci.2009.06.01820416687Goodpaster BH. 2002. Measuring body fat distribution and content in humans. Current Opinion in Clinical Nutrition and Metabolic Care 5:481-487.
10.1097/00075197-200209000-0000512172470Kim GW, Kim SE. 2009. Analysis of the domestic consumer's preference and consumption behaviors on pork. Journal of Animal Science and Technology 51:81-90. [in Korean]
10.5187/JAST.2009.51.1.081Kim S, Choi J, Kim ES, Keum GB, Doo H, Kwak J, Sumin R, Choi Y, Kang J, Kim H, et al. 2024. Assessing the relationship between muscle-to-fat ratio in pork belly and Boston butt using magnetic resonance imaging. Korean Journal of Agricultural Science 51:187-192.
10.7744/kjoas.510209Kim S, Choi J, Kim ES, Keum GB, Doo H, Kwak J, Sumin R, Choi Y, Pandey S, Lee NR, et al. 2023. Evaluation of the correlation between the muscle fat ratio of pork belly and pork shoulder butt using computed tomography scan. Korean Journal of Agricultural Science 50:809-816.
10.7744/kjoas.500418Kloareg M, Noblet J, Van Milgen J. 2006. Estimation of whole body lipid mass in finishing pigs. Animal Science 82:241-251.
10.1079/ASC200529Kongsro J, Gjerlaug-Enger E. 2013. In vivo prediction of intramuscular fat in pigs using computed tomography. Open Journal of Animal Sciences 3:321-325.
10.4236/ojas.2013.34048Lambe NR, Wood JD, McLean KA, Walling GA, Whitney H, Jagger S, Fullarton P, Bayntun J, Bünger L. 2013. Effects of low protein diets on pigs with a lean genotype 2. Compositional traits measured with computed tomography (CT). Meat Science 95:129-136.
10.1016/j.meatsci.2013.04.03823688799Lim D. 2018. Effect of carcass weight and thickness of back fat on the ratio of intramuscular fat in pork belly and shoulder butt. Food Science of Animal Resources and Industry 7:74-83. [in Korean]
Monziols M, Collewet G, Bonneau M, Mariette F, Davenel A, Kouba M. 2006. Quantification of muscle, subcutaneous fat and intermuscular fat in pig carcasses and cuts by magnetic resonance imaging. Meat Science 72:146-154.
10.1016/j.meatsci.2005.06.01822061385Monziols M, Collewet G, Mariette F, Kouba M, Davenel A. 2005. Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue. Magnetic Resonance Imaging 23:745-755.
10.1016/j.mri.2005.05.00116198830Narsaiah K, Biswas AK, Mandal PK. 2019. Nondestructive methods for carcass and meat quality evaluation. In Meat Quality Analysis: Advanced Evaluation Methods, Techniques, and Technologies edited by Biswas AK, Mandal PK. pp. 37-49. Academic Press, Cambridge, MA, USA.
10.1016/B978-0-12-819233-7.00003-3Navajas EA, Richardson RI, Fisher AV, Hyslop JJ, Ross DW, Prieto N, Simm G, Roehe R. 2010. Predicting beef carcass composition using tissue weights of a primal cut assessed by computed tomography. Animal 4:1810-1817.
10.1017/S175173111000109622445141Prieto N, Navajas EA, Richardson RI, Ross DW, Hyslop JJ, Simm G, Roehe R. 2010. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography. Meat Science 86:770-779.
10.1016/j.meatsci.2010.06.02020655149Prieto N, Roehe R, Lavín P, Batten G, Andrés S. 2009. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Science 83:175-186.
10.1016/j.meatsci.2009.04.01620416766Romvári R, Szabó A, Kárpáti J, Kovách G, Bázár G, Horn P. 2005. Measurement of belly composition variability in pigs by in vivo computed tomographic scanning. Acta Veterinaria Hungarica 53:153-162.
10.1556/avet.53.2005.2.115959974Rosenvold K, Andersen HJ. 2003. Factors of significance for pork quality-a review. Meat Science 64:219-237.
10.1016/S0309-1740(02)00186-922063008Scholz AM, Bünger L, Kongsro J, Baulain U, Mitchell AD. 2015. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 9:1250-1264.
10.1017/S175173111500033625743562PMC4492221Silva S, Guedes C, Rodrigues S, Teixeira A. 2020. Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats: A review. Foods 9:1074.
10.3390/foods908107432784641PMC7466308Szabo C, Babinszky L, Verstegen MWA, Vangen O, Jansman AJM, Kanis E. 1999. The application of digital imaging techniques in the in vivo estimation of the body composition of pigs: A review. Livestock Production Science 60:1-11.
10.1016/S0301-6226(99)00050-0- Publisher :Institute of Agricultural Science, Chungnam National University
- Publisher(Ko) :충남대학교 농업과학연구소
- Journal Title :Korean Journal of Agricultural Science
- Journal Title(Ko) :농업과학연구
- Volume : 51
- No :4
- Pages :443-450
- Received Date : 2024-08-20
- Revised Date : 2024-08-29
- Accepted Date : 2024-09-02
- DOI :https://doi.org/10.7744/kjoas.510403