All Issue

2025 Vol.52, Issue 1 Preview Page

Engineering

1 March 2025. pp. 51-65
Abstract
References
1

Araus JL, Cairns JE. 2014. Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science 19:52-61.

10.1016/j.tplants.2013.09.00824139902
2

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: The challenge of feeding 9 billion people. Science 327:812-818.

10.1126/science.118538320110467
3

He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). pp. 2961-2969. Venice, Italy: IEEE.

10.1109/ICCV.2017.322
4

IPCC (Intergovernmental Panel on Climate Change). 2023. Summary for policymakers. In Climate Change 2023: Synthesis Report (Contribution of Working Groups I, II and III to the Sixth Assessment Report of the IPCC) edited by Core Writing Team, Lee H, Romero J. pp. 1-34. IPCC, Geneva, Switzerland.

5

Joshi A, Pradhan B, Gite S, Chakraborty S. 2023. Remote-sensing data and deep-learning techniques in crop mapping and yield prediction: A systematic review. Remote Sensing 15:2014.

10.3390/rs15082014
6

Kwon JY, Kim E. 2014. Analysis of changes in the industrial structure by the ageing rate in Korea. Journal of Korean Society of Rural Planning 20:183-192. [in Korean]

10.7851/ksrp.2014.20.4.183
7

MAFRA (Ministry of Agriculture, Food and Rural Affairs). 2023. Major Statistics on Agriculture, Forestry, Livestock, and Food. MAFRA, Sejong, Korea. [in Korean]

8

Piao L, Zhang S, Yan J, Xiang T, Chen Y, Li M, Gu W. 2022. Contribution of fertilizer, density and row spacing practices for maize yield and efficiency enhancement in Northeast China. Plants 11:2985.

10.3390/plants1121298536365438PMC9659307
9

Pix4D. 2022. Pix4Dmapper. Ver. 4.1. Lausanne, Switzerland: Pix4D SA.

10

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R. 2009. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytologist 182:565-588.

10.1111/j.1469-8137.2009.02830.x19434804
11

Poorter H, Remkes C. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553-559.

10.1007/BF0031720928313192
12

Ren S, He K, Girshick R, Sun J. 2016. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39:1137-1149.

10.1109/TPAMI.2016.257703127295650
13

Sethy PK, Pandey C, Sahu YK, Behera SK. 2022. Hyperspectral imagery applications for precision agriculture - A systemic survey. Multimedia Tools and Applications 81:3005-3038.

10.1007/s11042-021-11729-8
14

Zhang J, Virk S, Porter W, Kenworthy K, Sullivan D, Schwartz B. 2019. Applications of unmanned aerial vehicle based imagery in turfgrass field trials. Frontiers in Plant Science 10:279.

10.3389/fpls.2019.0027930930917PMC6430071
15

Zhang N, Wang M, Wang N. 2002. Precision agriculture-a worldwide overview. Computers and Electronics in Agriculture 36:113-132.

10.1016/S0168-1699(02)00096-0
Information
  • Publisher :Institute of Agricultural Science, Chungnam National University
  • Publisher(Ko) :충남대학교 농업과학연구소
  • Journal Title :Korean Journal of Agricultural Science
  • Journal Title(Ko) :농업과학연구
  • Volume : 52
  • No :1
  • Pages :51-65
  • Received Date : 2025-02-07
  • Revised Date : 2025-02-24
  • Accepted Date : 2025-02-25