Engineering
Abbas F, Afzaal H, Farooque AA, Tang S. 2020. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 10:1046.
10.3390/agronomy10071046Abdulridha J, Ampatzidis Y, Roberts P, Kakarla SC. 2020. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosystems Engineering 197:135-148.
10.1016/j.biosystemseng.2020.07.001Agarwal S, Tarar S. 2021. A hybrid approach for crop yield prediction using machine learning and deep learning algorithms. Journal of Physics: Conference Series 1714:012012.
10.1088/1742-6596/1714/1/012012Ahmed MR, Yasmin J, Park E, Kim G, Kim MS, Wakholi C, Mo C, Cho BK. 2020. Classification of watermelon seeds using morphological patterns of X-ray imaging: A comparison of conventional machine learning and deep learning. Sensors 20:6753.
10.3390/s2023675333255997PMC7731397Ali F, Razzaq A, Tariq W, Hameed A, Rehman A, Razzaq K, Sarfraz S, Rajput NA, Zaki HEM, Shahid MS, et al. 2024. Spectral intelligence: AI-driven hyperspectral imaging for agricultural and ecosystem applications. Agronomy 14:2260.
10.3390/agronomy14102260Amarasingam N, Kelly JE, Sandino J, Hamilton M, Gonzalez F, Dehaan RL, Zheng L, Cherry H. 2024. Bitou bush detection and mapping using UAV-based multispectral and hyperspectral imagery and artificial intelligence. Remote Sensing Applications: Society and Environment 34:101151.
10.1016/j.rsase.2024.101151Ampatzidis Y, Partel V. 2019. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sensing 11:410.
10.3390/rs11040410Anitha P, Chakravarthy T. 2018. Agricultural crop yield prediction using artificial neural network with feed forward algorithm. International Journal of Computer Sciences and Engineering 6:178-181.
10.26438/ijcse/v6i11.178181Araus JL, Kefauver SC, Vergara-Díaz O, Gracia-Romero A, Rezzouk FZ, Segarra J, Buchaillot ML, Chang-Espino M, Vatter T, Sanchez-Bragado R, et al. 2022. Crop phenotyping in a context of global change: What to measure and how to do it. Journal of Integrative Plant Biology 64:592-618.
10.1111/jipb.1319134807514Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, et al. 2008. Overview of identification methods of mechanical parameters based on full-field measurements. Experimental Mechanics 48:381-402.
10.1007/s11340-008-9148-yBáez-González AD, Chen PY, Tiscareño-López M, Srinivasan R. 2002. Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico. Crop Science 42:1943-1949.
10.2135/cropsci2002.1943Bansal M, Goyal A, Choudhary A. 2022. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decision Analytics Journal 3:100071.
10.1016/j.dajour.2022.100071Camino C, Zarco-Tejada PJ, Gonzalez-Dugo V. 2018. Effects of heterogeneity within tree crowns on airborne-quantified SIF and the CWSI as indicators of water stress in the context of precision agriculture. Remote Sensing 10:604.
10.3390/rs10040604Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. 2020. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 408:189-215.
10.1016/j.neucom.2019.10.118Charbuty B, Abdulazeez A. 2021. Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends 2:20-28.
10.38094/jastt20165Choi JW, Kim SY, Kwon KD, Cho SB, Cho EA, Kim GW, Cho BK. 2023. Trend of artificial intelligence techniques for monitoring field-crop productivity. Journal of Agriculture & Life Science 57:1-11. [in Korean]
10.14397/jals.2023.57.5.1Egea G, Padilla-Díaz CM, Martínez J, Fernández JE, Pérez-Ruiz M. 2016. Use of aerial thermal imaging to assess water status variability in hedgerow olive orchards. In: Proceedings of the International Conference on Agricultural Engineering. pp. 1-8. Aarhus, Denmark: CIGR-AgEng.
Elameen A, Fjellheim S, Larsen A, Rognli OA, Sundheim L, Msolla S, Masumba E, Mtunda K, Klemsdal SS. 2008. Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP. Genetic Resources and Crop Evolution 55:397-408.
10.1007/s10722-007-9247-0El-Hendawy S, Al-Suhaibani N, Salem AEA, Ur Rehman S, Schmidhalter U. 2015. Spectral reflectance indices as a rapid and nondestructive phenotyping tool for estimating different morphophysiological traits of contrasting spring wheat germplasms under arid conditions. Turkish Journal of Agriculture and Forestry 39:572-587.
10.3906/tar-1406-164Farinu A, Baik OD. 2007. Thermal properties of sweet potato with its moisture content and temperature. International Journal of Food Properties 10:703-719.
10.1080/10942910601137482Fei S, Hassan MA, Xiao Y, Su X, Chen Z, Cheng Q, Duan F, Chen R, Ma Y. 2023. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precision Agriculture 24:187-212.
10.1007/s11119-022-09938-835967193PMC9362526Gago J, Douthe C, Coopman RE, Gallego PP, Ribas-Carbo M, Flexas J, Escalona J, Medrano H. 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management 153:9-19.
10.1016/j.agwat.2015.01.020Gajanayake B, Raja Reddy K, Shankle MW, Arancibia RA. 2013. Early-season soil moisture deficit reduces sweetpotato storage root initiation and development. HortScience 48:1457-1462.
10.21273/HORTSCI.48.12.1457Gajanayake B, Reddy KR. 2016. Sweetpotato responses to mid- and late-season soil moisture deficits. Crop Science 56:1865-1877.
10.2135/cropsci2015.03.0154Giménez-Gallego J, González-Teruel JD, Soto-Valles F, Jiménez-Buendía M, Navarro-Hellín H, Torres-Sánchez R. 2021. Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Computers and Electronics in Agriculture 188: 106319.
10.1016/j.compag.2021.106319Guo Y, Fu Y, Hao F, Zhang X, Wu W, Jin X, Bryant CR, Senthilnath J. 2021. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators 120:106935.
10.1016/j.ecolind.2020.106935Gupta S, Geetha A, Sankaran KS, Zamani AS, Ritonga M, Raj R, Ray S, Mohammed HS. 2022. Machine learning- and feature selection-enabled framework for accurate crop yield prediction. Journal of Food Quality 2022:6293985.
10.1155/2022/6293985Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J. 2018. Vineyard water status assessment using on-the-go thermal imaging and machine learning. PLoS ONE 13:e0192037.
10.1371/journal.pone.019203729389982PMC5794144He Z, Li S, Wang Y, Dai L, Lin S. 2018. Monitoring rice phenology based on backscattering characteristics of multi-temporal RADARSAT-2 datasets. Remote Sensing 10:340.
10.3390/rs10020340Huang TT, Zhou DN, Jin ZY, Xu XM, Chen HQ. 2016. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids 54:202-210.
10.1016/j.foodhyd.2015.10.002Idso SB, Jackson RD, Pinter PJ, Reginato RJ, Hatfield JL. 1981. Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology 24:45-55.
10.1016/0002-1571(81)90032-7Ip RHL, Ang LM, Seng KP, Broster JC, Pratley JE. 2018. Big data and machine learning for crop protection. Computers and Electronics in Agriculture 151:376-383.
10.1016/j.compag.2018.06.008Jones HG. 1999. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agricultural and Forest Meteorology 95:139-149.
10.1016/S0168-1923(99)00030-1Kapari M, Sibanda M, Magidi J, Mabhaudhi T, Nhamo L, Mpandeli S. 2024. Comparing machine learning algorithms for estimating the maize crop water stress index (CWSI) using UAV-acquired remotely sensed data in smallholder croplands. Drones 8:61.
10.3390/drones8020061Kulembeka H, Rugutu C, Kanju E, Chirimi B, Rwiza E, Amour R. 2005. The agronomic performance and acceptability of orange fleshed sweetpotato varieties in the Lake zone of Tanzania. African Crop Science Journal 12:229-240.
10.4314/acsj.v12i3.27883Laurie RN, Du Plooy CP, Laurie SM. 2009. Effect of moisture stress on growth and performance of orange fleshed sweetpotato varieties. In: Proceedings of the African Crop Science Conference. pp. 235-239. Cape Town, South Africa: ACSS.
Li Q, Xu S, Zhuang J, Liu J, Zhou Y, Zhang Z. 2023. Ensemble learning prediction of soybean yields in China based on meteorological data. Journal of Integrative Agriculture 22:1909-1927.
10.1016/j.jia.2023.02.011Ma ZC, Sun P, Zhang Q, Hu YQ, Jiang W. 2021. Characterization and evaluation of MODIS-derived crop water stress index (CWSI) for monitoring drought from 2001 to 2017 over Inner Mongolia. Sustainability 13:916.
10.3390/su13020916Pant J, Pant RP, Kumar Singh M, Pratap Singh D, Pant H. 2021. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings 46:10922-10926.
10.1016/j.matpr.2021.01.948Pentland AP. 1987. A new sense for depth of field. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9:523-531.
10.1109/TPAMI.1987.476794021869410Peñuelas J, Isla R, Filella I, Araus JL. 1997. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Science 37:198-202.
10.2135/cropsci1997.0011183X003700010033xReilly JM, Fuglie KO. 1998. Future yield growth in field crops: What evidence exists? Soil and Tillage Research 47:275-290.
10.1016/S0167-1987(98)00116-0Sangakkara UR. 1988. Effect of EM on the growth and yield of sweet potato in wet and dry seasons. Ph.D. dissertation, Univ. of Peradeniya, Peradeniya, Sri Lanka.
Sapakhova Z, Raissova N, Daurov D, Zhapar K, Daurova A, Zhigailov A, Zhambakin K, Shamekova M. 2023. Sweet potato as a key crop for food security under the conditions of global climate change: A review. Plants 12:2516.
10.3390/plants1213251637447081PMC10346279Shao HH, Chen SD, Zhang K, Cao QH, Zhou H, Ma QQ, He B, Yuan XH, Wang Y, Chen YH, et al. 2014. Isolation and expression studies of the ERD15 gene involved in drought-stressed responses. Genetics and Molecular Research 13:10852-10862.
10.4238/2014.December.19.625526205Sisco MR. 2021. The effects of weather experiences on climate change attitudes and behaviors. Current Opinion in Environmental Sustainability 52:111-117.
10.1016/j.cosust.2021.09.001Song HJ, Choi W, Wang Z. 2024. Abnormal climate in 2022 summer in Korea and Asia. Asia-Pacific Journal of Atmospheric Sciences 60:385-386.
10.1007/s13143-024-00381-5Syeda IH, Alam MM, Illahi U, Su'ud MM. 2021. Advance control strategies using image processing, UAV and AI in agriculture: A review. World Journal of Engineering 18:579-589.
10.1108/WJE-09-2020-0459Szajewska A. 2017. Development of the thermal imaging camera (TIC) technology. Procedia Engineering 172:1067-1072.
10.1016/j.proeng.2017.02.164Wang H, Li G, Wang Z. 2023. Fast SVM classifier for large-scale classification problems. Information Sciences 642:119136.
10.1016/j.ins.2023.119136Williams NL, Peck TC. 2019. Estimation of rotation gain thresholds considering FOV, gender, and distractors. IEEE Transactions on Visualization and Computer Graphics 25:3158-3168.
10.1109/TVCG.2019.293221331403416Wong WK, Tan PN, Loo CK, Lim WS. 2009. An effective surveillance system using thermal camera. In: Proceedings of the 2009 International Conference on Signal Acquisition and Processing. pp. 13-17. Kuala Lumpur, Malaysia: IEEE.
10.1109/ICSAP.2009.12Zhang Z, Liu H, Yang C, Ampatzidis Y, Zhou J, Jiang Y. 2022. Unmanned Aerial Systems in Precision Agriculture: Technological Progresses and Applications. Smart Agriculture, Vol. 2. Springer, Singapore.
10.1007/978-981-19-2027-1- Publisher :Institute of Agricultural Science, Chungnam National University
- Publisher(Ko) :충남대학교 농업과학연구소
- Journal Title :Korean Journal of Agricultural Science
- Journal Title(Ko) :농업과학연구
- Volume : 51
- No :4
- Pages :751-763
- Received Date : 2024-10-16
- Revised Date : 2024-11-05
- Accepted Date : 2024-11-06
- DOI :https://doi.org/10.7744/kjoas.510425