FOOD&CHEMISTRY

Effects of organic fertilizers mixed with dehydrated food waste powder on agronomic performance of leafy vegetables

Jae-Han  Lee1   You-Jin  Choi1   Jin-Hyuk  Chun1   Yun-Gu  Kang1   Yeo-Uk  Yun2   Taek-Keun  Oh1,*   

1Department of Bio-Environmental Chemistry, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
2Chungnam Agricultural Research and Extension Services, Yesan 32418, Korea

Abstract

Castor oil cake is widely used as a raw material for organic fertilizers (OF) in Korea. Compared to other fertilizer raw materials, it is highly dependent on imports. In terms of replacing raw materials, dehydrated food waste powder (FDP) and castor oil cake have similar nutritional content, and if 30% is replaced, about 20% of the raw material cost can be saved. However, few studies on the effects on crop growth and soil properties when organic fertilizer and dry food waste powder are mixed and applied to the soil have been reported. The effects of an organic fertilizer made by mixing the commercial available organic fertilizer with dehydrated food waste (OF + FDP) on soil properties and the growth of two types of leafy vegetables (lettuce and young radish) were evaluated and compared with the performance of OF. The fresh weights of lettuce and young radish were the highest with OF amendment and stood at 114.3 and 119.0 g·plant-1, respectively. These were followed by OF + FDP amendment, which produced 103.1 and 109.6 g·plant-1, respectively. Compared to the control, OF and OF + FDP increased the lettuce fresh weights by about 69% and 52%, respectively, while the fresh weights of the radish were increased by about 223% and 207%, respectively. The soil pH, EC, total carbon content, and organic matter content in OF and OF + FDP increased. The mixture of dehydrated food waste powder and organic fertilizers is expected to improve soil quality and facilitate stable production of crops and contribute to the substitution of imported organic fertilizer raw materials.

Figures & Tables