Abstract
A wide range of techniques have been developed to separate X or Y- chromosome-bearing sperm. In particular, bovine semen sex-sorted by using flow cytometry based on differences in the amount of DNA between X and Y chromosome bearing sperm is used in dairy farms. The first piglets were produced using sex-sorted sperm 30 years ago. However, sexed sperm have not been commercially available in pigs because the flow cytometry technique is not capable of sorting the high number of sperm required for porcine artificial insemination (AI), and the prolonged exposure to an electrical filed might damage to the DNA in sperm. The purpose of this study was to evaluate a boar sperm sorting method based on magnetic nanoparticles. A flow cytometer assay verified the efficacy of the magnetic nanoparticles (> 90% of sex-sorted sperm). In addition, a duplex polymerase chain reaction (PCR) assay using sex chromosome specific genes including SRY (sex-determining region Y; male), ZFY (zinc finger protein Y-linked; male), and ZFX (zinc finger protein X-linked; female) showed that
Figures & Tables
Fig. 1. Efficiency of sex-sorting by magnetic nanoparticles. The images show population of both X and Y chromosome bearing sperm, X-chromosome bearing sperm, and Y-chromosome bearing sperm. The accuracy of sorting was analyzed by the flow cytometer. DAPI, 4′,6-diamidino-2-phenylindole; Cy3, cyanine 3.